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Abstract. It is well known that the space-time coordinates xµ and the corresponding Dp-brane world-
volume become non-commutative when the ends of the open string are attached to a Dp-brane with
the Neveu–Schwarz background field Bµν . In this paper, we extend these considerations by including an
additional dilaton field Φ, linear in xµ. In that case, the conformal part of the world-sheet metric becomes
a new non-commutative variable, while the coordinate in the direction orthogonal to the hyper plane
Φ = const becomes commutative.

PACS. 11.25.-w, 04.20.Fy, 11.10.Nx

1 Introduction

Non-commutative theories arise as an effective descrip-
tion of the string theory in certain backgrounds [1]. In the
presence of the antisymmetric tensor field Bµν , the quan-
tization of the open string, whose ends are attached to
a Dp-brane, leads to non-commutativity of the Dp-brane
world-volume. For constant Bµν and the space-time metric
Gµν , this result can be obtained by using several differ-
ent methods: the operator product expansion of the open
string vertex operators [2], the mode expansion of the clas-
sical solution [3], the methods of the conformal field theory
[4], and the Dirac quantization procedure for constrained
systems [5].

In this paper, we keep the background fields Gµν and
Bµν constant, but include an additional dilaton field Φ,
linear in the space-time coordinate xµ. This choice is con-
sistent with the space-time field equations, obtained from
the world-sheet conformal invariance. D-branes in the lin-
ear dilaton background were studied in [6,7]: in [6], the
Dirichlet boundary condition was constructed, while in
[7], the non-commutativity structure was analyzed.

In our approach, the conformal part F of the world-
sheet metric is a dynamical variable. Hence, beside the
known boundary conditions corresponding to the Dp-
brane coordinates xi, we have an additional condition cor-
responding to F . The authors of [7] fixed F , and conse-
quently, they missed the additional boundary condition,
whereby their treatment lost generality, as we will see
later.

In this paper, we apply the canonical method along
the lines of [5], and treat our boundary conditions as the
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canonical constraints. They appear as particular orbifold
conditions, so that all the effective variables are symmet-
ric under the transformation σ → −σ, which reduces the
number of phase space variables by a factor of two.

All the constraints are of second class. Instead of using
the Dirac brackets, as in [5], we shall explicitly solve the
constraints in terms of the effective open string variables:
the coordinates qi and the conformal part of the world-
sheet metric f .

Expressed in terms of the open string variables, the
effective theory is found to have exactly the same form
as the original theory, but with different Dp-brane back-
ground fields. Moreover, Bµν contributes only to the effec-
tive metric tensor, as in the absence of Φ, and the effective
dilaton field is linear in qi.

After calculating the Poisson brackets of all the dy-
namical variables, one finds that, effectively, Bµν is pro-
jected onto the directions orthogonal to ∂µΦ. Conse-
quently, on the world-sheet boundary, there exists a Dp-
brane coordinate, defined by x ≡ xµ∂µΦ, which commutes
with all the other coordinates. However, it turns out that
F does not commute with the string coordinates orthog-
onal to ∂µΦ. Therefore, when the linear dilaton is present
in the theory, and if F is interpreted as an additional co-
ordinate, the total number of non-commuting coordinates
remains the same.

2 Definition of the model
and canonical analysis

We study the theory defined by the action

S = κ

∫
Σ

d2ξ
√−g
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×
{[

1
2
gαβGµν(x) +

εαβ

√−g
Bµν(x)

]
∂αxµ∂βxν

+ Φ(x)R(2)
}

+ 2κ

∫
∂Σ

Aidxi, (2.1)

which describes the propagation of the bosonic open string
[8–12]. Here, ξα (α = 0, 1) are the coordinates of the two-
dimensional world-sheet Σ, xµ(ξ) (µ = 0, 1, ..., D − 1) are
the coordinates of the D-dimensional space-time MD, xi

(i = 0, 1, ..., p) are the coordinates describing the Dp-brane
in our gauge choice, gαβ is the intrinsic world-sheet metric,
R(2) is the corresponding scalar curvature, and we use the
notation ∂α ≡ ∂/∂ξα, ∂µ ≡ ∂/∂xµ and ∂i ≡ ∂/∂xi. The
non-trivial background is defined by the space-time metric
tensor Gµν , the antisymmetric tensor Bµν = −Bνµ, the
dilaton Φ, and the U(1) gauge field Ai, living on the Dp-
brane.

If both ends of the open string are attached to the
same Dp-brane, the action can be written as

S = κ

∫
Σ

d2ξ
√−g

×
{[

1
2
gαβGµν(x) +

εαβ

√−g
Fµν(x)

]
∂αxµ∂βxν

+ Φ(x)R(2)
}

, (2.2)

where Fµν is the modified Born–Infeld field strength,

Fµν = Bµν + (∂iAj − ∂jAi)δi
µδj

ν . (2.3)

In the conformal gauge gαβ = e2F ηαβ , we have R(2) =
2∆F , and the action takes the form

S = κ

∫
Σ

d2ξ

{[
1
2
ηαβGµν(x) + εαβFµν(x)

]
∂αxµ∂βxν

+ 2Φ(x)e2F ∆F
}

. (2.4)

Note that the dilaton field breaks the conformal invari-
ance; hence, the conformal part of the metric survives,
and the dynamical variables of the theory are xµ and F .

It is an enormous task to make further progress with
arbitrary background fields. Instead, we employ a partic-
ular solution of the space-time field equations [9]:

βG
µν ≡ Rµν − 1

4FµρσFν
ρσ + 2Dµaν = 0, (2.5)

βF
µν ≡ DρFρ

µν − 2aρFρ
µν = 0, (2.6)

βΦ ≡ 4πκ
D − 26

3
− R + 1

12FµρσFµρσ − 4Dµaµ + 4a2

= 0. (2.7)

These equations are obtained as a consequence of the
quantum world-sheet conformal invariance, which is a nec-
essary condition for the consistency of the theory. Here,
aµ = ∂µΦ, Fµρσ is the field strength for Fµν , and Rµν , R
and Dµ are Ricci tensor, scalar curvature and the covari-
ant derivative corresponding to the Riemannian structure
of space-time. Following [12], we chose

Gµν(x) = Gµν = const, Fµν(x) = Fµν = const,

Φ(x) = Φ0 + aµxµ (aµ = const), (2.8)

which is an exact solution if

a2 = κπ
26 − D

3
. (2.9)

We assume, for simplicity, that Bµν and aµ are non-
trivial only along the Dp-brane directions, so that Fµν →
Fij and aµ → ai. We also chose the coordinates so that
Gµν = 0 for µ = i ∈ {0, 1, ..., p} and ν = a ∈ {p+1, ..., D−
1}. In that case, the action integral takes the form

S = κ

∫
Σ

d2ξ

{
1
2
ηαβGµν∂αxµ∂βxν + εαβFij∂αxi∂βxj

+ 2(Φ0 + aix
i)e2F ∆F

}
, (2.10)

and the components xa decouple from all the other vari-
ables.

In order to apply the canonical method to the action
(2.10), we briefly review the results of the canonical analy-
sis given in [13], adapted to the present case. The currents
corresponding to the Dp-brane directions have the form

J i
± = PT ijj±j +

ai

2a2 iΦ± = ji
± − ai

a2 j (ai ≡ ∂iΦ),

(2.11)

j = aij±i − 1
2
iΦ±, iΦ± = π ± 2κaix

i′, (2.12)

j±i = πi + 2κΠ±ijx
j ′

(
Π±ij ≡ Fij ± 1

2
Gij

)
, (2.13)

where πi and π are the canonical momenta corresponding
to xi and F , respectively. For the directions orthogonal to
the Dp-brane, the only non-trivial current is

j±a = πa ± κGabx
b′

, (2.14)

where πa is the momentum corresponding to xa. It com-
mutes with all the other currents, and will be ignored in
what follows. We also introduce the projection operators

PL
ij =

aiaj

a2 , PT
ij = Gij − aiaj

a2 . (2.15)

All τ and σ derivatives of xi and F can be expressed in
terms of the corresponding currents:

ẋi =
1
2κ

(J i
− + J i

+), Ḟ =
1
4κ

(iF− + iF+), (2.16)

xi′ =
1
2κ

(J i
+ − J i

−), F ′ =
1
4κ

(iF+ − iF−). (2.17)

The Dp-brane part of the canonical Hamiltonian density

Hc = T− − T+ (2.18)

is defined in terms of the energy-momentum tensor com-
ponents

T± = ∓ 1
4κ

(
GijJ±iJ±j +

j

a2 iΦ±

)
+

1
2
(iΦ′

± −F ′iΦ±). (2.19)

These components satisfy two independent copies of the
Virasoro algebra:

{T±, T±} = −[T±(σ) + T±(σ̄)]δ′, {T±, T∓} = 0. (2.20)
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3 Open string boundary conditions
as constraints

To describe the open string temporal evolution, we need
both the equations of motion and the boundary condi-
tions. The canonical world-sheet field equations were de-
rived in [13]. In the particular case of the present paper,
they have the form ∆xµ − 2aµ∆F = 0, aµ∆xµ = 0, and
for a2 �= 0 they take the standard form:

∆xµ = 0, ∆F = 0. (3.1)

In order to study the boundary conditions, it is useful
to introduce the variables

γ
(0)
i ≡ δS

δx′i = κ(−Gijx
j′ + 2Fij ẋ

j − 2aiF
′),

γ(0) ≡ δS

δF ′ = −2κaix
i′. (3.2)

For the variables xi and F , we use Neumann boundary
conditions, allowing arbitrary variations δxi and δF on
the string end points. Then, the boundary conditions can
be written in the form

γ
(0)
i

∣∣∣
∂Σ

= 0, γ(0)
∣∣∣
∂Σ

= 0. (3.3)

The second condition, corresponding to the additional
variable F , is a new one, as compared to the dilaton free
case. Note that the constant field Fij does not appear
in the equations of motion, and contributes only to the
boundary conditions.

For the variables xa, we use Dirichlet boundary con-
ditions, requiring the edges of the string to be fixed,
δxa|∂Σ = 0.

Using the expressions for τ and σ derivatives, (2.16)
and (2.17), we can rewrite the boundary conditions (3.3)
in terms of the currents,

γ
(0)
i = Π+ijJ

j
− + Π−ijJ

j
+ +

ai

2
(iF− − iF+),

γ(0) =
1
2
(iΦ− − iΦ+). (3.4)

Following the approach of [5], we consider the expres-
sions γ

(0)
i

∣∣∣
∂Σ

and γ(0)
∣∣
∂Σ

as the canonical constraints.
In order to find the corresponding consistency conditions,
we note that the background fields Gij ,Fij and ai are
xi-independent, which simplifies the form of the Poisson
brackets:

{Hc, J±i} = ∓J ′
±i, {Hc, i

Φ
±} = ∓i′Φ± ,

{Hc, i
F
±} = ∓i′F± . (3.5)

The Dirac consistency procedure generates two infinite
sets of conditions, γ

(n)
i

∣∣∣
∂Σ

= 0 and γ(n)
∣∣
∂Σ

= 0, (n ≥ 1),
where

γ
(n)
i ≡ {Hc, γ

(n−1)
i }

= ∂n
σ

{
Π+ijJ

j
− + (−1)nΠ−ijJ

j
+

+
ai

2
[
iF− − (−1)niF+

]}
, (3.6)

γ(n) ≡ {Hc, γ
(n−1)} =

1
2
∂n

σ

[
iΦ− − (−1)niΦ+

]
. (3.7)

Using the Taylor expansion formula, we find that these
conditions at σ = 0 can be compactly written in the form

Γi(σ) ≡
∑
n≥0

σn

n!
γ

(n)
i (0)

= Π+ijJ
j
−(σ) + Π−ijJ

j
+(−σ)

+
ai

2
[
iF−(σ) − iF+(−σ)

]
, (3.8)

Γ (σ) ≡
∑
n≥0

σn

n!
γ(n)(0)

=
1
2

[
iΦ−(σ) − iΦ+(−σ)

]
. (3.9)

Similarly, the conditions at σ = π are given as

Γ̄i(σ) ≡
∑
n≥0

(σ − π)n

n!
γ

(n)
i (π)

= Π+ijJ
j
−(σ) + Π−ijJ

j
+(2π − σ)

+
ai

2
[
iF−(σ) − iF+(2π − σ)

]
, (3.10)

Γ̄ (σ) ≡
∑
n≥0

(σ − π)n

n!
γ(n)(π)

=
1
2

[
iΦ−(σ) − iΦ+(2π − σ)

]
. (3.11)

These expressions differ from the boundary conditions
(3.4) only in the arguments of the positive chirality cur-
rents: σ is replaced by −σ in the first case, and by 2π − σ
in the second case. From (3.8)–(3.11), we conclude that all
positive chirality currents, and consequently all the vari-
ables, are periodic in σ, with period 2π.

Equations (3.5) imply that all constraints weakly com-
mute with the Hamiltonian:

{Hc, Γi(σ)} = Γ ′
i (σ) , {Hc, Γ (σ)} = Γ ′(σ). (3.12)

Therefore, there are no more constraints, and the consis-
tency procedure is completed. A straightforward calcula-
tion yields

{Γi(σ), Γj(σ̄)} = −κG̃ijδ
′(σ − σ̄),

{Γ (σ), Γ (σ̄)} = 0, (3.13)
{Γi(σ), Γ (σ̄)} = −2κaiδ

′(σ − σ̄), (3.14)

where we introduced the effective metric tensor

G̃ij ≡ Gij − 4FikPTkqFqj . (3.15)

Following [4], we refer to G̃ij as the open string metric
tensor – the metric tensor seen by the open string. When
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the inverse effective metric G̃ij is used to raise the index
of Vi, we write Ṽ i = G̃ijVj , and similarly, Ṽ 2 = G̃ijViVj .
We also preserve the standard notation, V i = GijVj and
V 2 = GijViVj .

Introducing the compact notation ΓA = {Γi, Γ} for
the complete set of constraints, we find

{ΓA(σ), ΓB(σ̄)} = −κ

∣∣∣∣∣
G̃ij 2ai

2aj 0

∣∣∣∣∣ δ′(σ − σ̄)

≡ ∆ABδ′(σ − σ̄), (3.16)

and

� ≡ det �AB = −4(−κ)p+2ã2 det G̃ij . (3.17)

We assume that ã2 �= 0. In that case, rank�AB = p + 2
and all the constraints are of the second class (except for
the zero mode [14]).

4 Solving the boundary conditions

The periodicity condition solves the second set of con-
straints (3.10)–(3.11). In order to solve the first set (3.8)–
(3.9), it is useful to introduce the new variables

qi(σ) =
1
2

[
xi(σ) + xi(−σ)

]
,

q̄i(σ) =
1
2

[
xi(σ) − xi(−σ)

]
, (4.1)

pi(σ) =
1
2

[πi(σ) + πi(−σ)] ,

p̄i(σ) =
1
2

[πi(σ) − πi(−σ)] , (4.2)

f(σ) =
1
2

[F (σ) + F (−σ)] ,

f̄(σ) =
1
2

[F (σ) − F (−σ)] , (4.3)

p(σ) =
1
2

[π(σ) + π(−σ)] ,

p̄(σ) =
1
2

[π(σ) − π(−σ)] , (4.4)

which we call the open string variables. Using the relations

1
2
[j−i(σ) + j+i(−σ)] = pi + 2κFij q̄

j′ − κGijq
j′ ,

(4.5)
1
2
[j−i(σ) − j+i(−σ)] = p̄i + 2κFijq

j′ − κGij q̄
j′ ,

(4.6)
1
2
[iΦ−(σ) − iΦ+(−σ)] = p̄ − 2κaiq̄

i′, (4.7)

we can write the constraints in terms of the open string
variables

Γi(σ) (4.8)

= 2(FPT)i
jpj + p̄i +

1
a2 Fija

jp − κG̃ij q̄
j′ − 2κaif̄

′,

Γ (σ) = p̄ − 2κaiq̄
i′. (4.9)

The parts of these relations which are symmetric and
antisymmetric under σ → −σ separately vanish. There-
fore, the conditions Γi(σ) = 0 and Γ (σ) = 0 imply

p̄i = 0,

2(FPT)i
jpj +

1
a2 Fija

jp − κG̃ij q̄
j′ − 2κaif̄

′ = 0,

(4.10)

p̄ = 0, aiq̄
i′ = 0. (4.11)

Now, we can solve the antisymmetric (barred) variables in
terms of the symmetric ones,

p̄i = 0, q̄i′ = −2(Θijpj + Θip), (4.12)

p̄ = 0, f̄ ′ = 2Θipi, (4.13)

where

Θij =
−1
κ

P̃TikFkqP
Tqj (Θij = −Θji), (4.14)

Θi =
(ãF)i

2κã2 =
(aFG̃−1)i

2κa2 . (4.15)

In analogy with (2.15), we introduced the tilde projectors:

P̃Lij =
ãiãj

ã2 , P̃Tij = G̃ij − ãiãj

ã2 . (4.16)

Using (4.1)–(4.4) and (4.12)–(4.13), we can express the
original variables in terms of the new ones,

xi = qi − 2
∫ σ

dσ1
(
Θijpj + Θip

)
, πi = pi, (4.17)

F = f + 2 Θi

∫ σ

dσ1 pi, π = p. (4.18)

As a consequence of the particular form of the condi-
tions Γi(σ) = 0 and Γ (σ) = 0, the effective theory depends
only on the variables symmetric under σ → −σ.

5 The effective theory in terms
of the open string variables

The original string theory is completely described by the
energy-momentum tensor T±, (2.19), in terms of the vari-
ables xi, F and the corresponding momenta πi, π. We now
wish to find the effective energy-momentum tensor T̃± in
terms of the new variables qi, f and their momenta pi, p.

Since the form of the energy-momentum tensor de-
pends on the currents, let us first express the currents in
terms of the new variables. In analogy with (2.11)–(2.13),
we introduce the set of new, open string currents:

ĩΦ± = p ± 2κaiq
i′, (5.1)
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j̃±i = pi ± κG̃ijq
j′, j̃ = ãij̃±i − 1

2
ĩΦ±, (5.2)

J̃ i
± = P̃Tij j̃±j +

ãi

2ã2 ĩΦ± = G̃ij j̃±i − ãi

ã2 j̃. (5.3)

They depend on the new variables similarly as the orig-
inal currents depend on the original variables. The met-
ric tensor is systematically replaced by the effective one.
The main difference is that there is no explicit depen-
dence on Bµν ; it contributes only through the effective
metric tensor. Formally, we can first put Fij → 0 and
then Gij → G̃ij .

With the help of (4.17)–(4.18), we can express the orig-
inal currents (2.11)–(2.13) in terms of the open string cur-
rents (5.1)–(5.3):

iΦ± = ĩΦ±,
j

a2 =
j̃

ã2 +
2κ

a2 aiFijq
j′, (5.4)

J±i = ±2Π̃±ij J̃
j
±

(
Π̃±ij = Π±ij − PL

i
kFkj

)
. (5.5)

Using the identity

4GijΠ̃±ikΠ̃±jq = G̃kq ± 2(FkrP
Lr

q − PL
k

rFrq), (5.6)

we obtain a useful relation,

GijJ±iJ±j = G̃ij J̃
i
±J̃j

± ∓ 2
ã2 ĩΦ±ãiFij j̃

j
± . (5.7)

Finally, we are in a position to find the energy-momentum
tensor in terms of the open string variables. With the help
of (5.4)–(5.7) we obtain

T± = T̃±, (5.8)

where

T̃± = ∓ 1
4κ

(
G̃ij J̃±iJ̃±j +

j̃

ã2 ĩΦ±

)
+

1
2
(̃iΦ′

± − f ′ĩΦ±). (5.9)

Thus, we can conclude that the effective energy-
momentum tensor depends on the open string currents in
exactly the same way as the original energy-momentum
tensor depends on the original currents.

In the standard formulation, the theory is expressed
in terms of the canonical variables xi, F , πi and π, in the
background described by the fields Gij , Fij and Φ. In that
case, together with the equations of motion, the boundary
conditions (3.3) must be used.

The effective theory is expressed in terms of the new
canonical variables qi, f , pi and p, in the background de-
scribed by the fields G̃ij , F̃ij = 0 and Φ̃ = Φ0 + aiq

i.
In this case, the symmetries under the transformations
σ → σ + 2π and σ → −σ should be imposed, which are
particular forms of the orbifold conditions.

The open string Hamiltonian and the corresponding
equations of motion take the form

H̃c = T̃− − T̃+, ∆̃qi = 0, ∆̃f = 0. (5.10)

The Laplace operator ∆̃ is defined with respect to the
effective world-sheet metric g̃αβ = e2fηαβ .

6 The non-commutative conformal factor
and a commutative Dp-brane direction

From the standard Poisson brackets

{xi(σ), πj(σ̄)} = δi
jδ(σ − σ̄),

{F (σ), π(σ̄)} = δ(σ − σ̄) (6.1)

and the relations (4.1)–(4.4), we have

{qi(σ), pj(σ̄)} = δi
jδs(σ, σ̄),

{f(σ), p(σ̄)} = δs(σ, σ̄), (6.2)

where

δs(σ, σ̄) =
1
2

[δ(σ − σ̄) + δ(σ + σ̄)]

(σ, σ̄ ∈ [0, π]) (6.3)

is the symmetric delta-function. Consequently, on the sub-
space symmetric under σ → −σ, pi and p are canonically
conjugate momenta to the variables qi and f , respectively.

With the help of (4.17)–(4.18), we calculate the Pois-
son brackets

{xi(σ), xj(σ̄)} = 2Θij∆(σ + σ̄),

{xi(σ), F (σ̄)} = 2Θi∆(σ + σ̄), (6.4)

where Θij and Θi have been defined in (4.14) and (4.15),
respectively, and

∆(σ + σ̄) = θ(σ + σ̄) =




0, σ = 0 = σ̄,

1, σ = π = σ̄,
1
2 , otherwise.

(6.5)

If we separate the center of mass variable by introducing
xi(σ) = xi

cm +Xi(σ), where xi
cm = 1

π

∫ π

0 dσxi(σ), we have

{Xi(σ), Xj(σ̄)} (6.6)

= 2Θij

[
∆(σ + σ̄) − 1

2

]
= Θij




−1, σ = 0 = σ̄

1, σ = π = σ̄

0, otherwise
,

{Xi(σ), F (σ̄)} (6.7)

= 2Θi

[
∆(σ + σ̄) − 1

2

]
= Θi




−1, σ = 0 = σ̄,

1, σ = π = σ̄,

0, otherwise.

The relation (6.7) has not been considered before in
the literature. It shows that, in the presence of a dila-
ton, the non-commutativity between Xi and F appears
on the world-sheet boundary. The expression for this new
non-commutativity parameter, Θi, is proportional to the
Born–Infeld field, Fij .

The relation (6.6) has the same form as in the absence
of a dilaton [3–7], but there are some significant differ-
ences.
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Let us first explain the geometrical meaning of the pro-
jectors PTij and P̃Tij . Note that the vector ai is normal
to the p-dimensional submanifold Mp of the Dp-brane, de-
fined by the condition Φ(x) = const. For a2 �= 0 (ã2 �= 0),
the corresponding unit vectors for the closed and open
string are ni = ai/

√
εa2 and ñi = ai/

√
ε̃ã2, respectively.

Here ε = 1 (ε̃ = 1) if ai is timelike, and ε = −1 (ε̃ = −1) if
ai is spacelike with respect to the metric Gij (G̃ij). Con-
sequently, the induced metrics on Mp are

PT
ij = Gij − εninj ≡ G

(p)
ij ,

P̃T
ij = G̃ij − ε̃ñiñj ≡ G̃

(p)
ij ,

(6.8)

and we can rewrite (4.14) in the form

Θij =
−1
κ

G̃(p)ikFkqG
(p)qj . (6.9)

This expression has similar form as in the absence of
dilaton. Again, the essential part is the Born–Infeld field
strength Fkq, but in the present case, we raise indices with
the induced metrics G̃(p)ij and G(p)ij on Mp, instead of
the metrics Gij

eff = (G − 4FG−1F)−1ij and Gij on the
Dp-brane.

From the relations aiP
Tij = 0 and ãFa = 0, it follows

that aiΘ
ij = 0 and aiΘ

i = 0, so that the component
x ≡ aix

i commutes with all the other coordinates as well
as with F :

{x(σ), xj(σ̄)} = 0, {x(σ), F (σ̄)} = 0. (6.10)

This is an example of the Dp-brane with one commutative
coordinate in the ai direction.

7 Concluding remarks

In the present paper, we studied the string propagation
in the presence of the linear dilaton field, in addition to
the constant Gµν and Bµν . This choice of the background
preserves the conformal symmetry at the quantum level.
We investigated the contribution of the dilaton field to the
non-commutativity of the Dp-brane world-volume.

The initial open string boundary conditions produce
an infinite set of constraints, obtained by applying the
Dirac consistency procedure. We solved them explicitly
by imposing the periodicity condition and expressing the
odd variables (with respect to σ → −σ) in terms of the
even ones.

The effective theory, given in terms of the open string
variables qj and f , has precisely the same form as the
original theory expressed in terms of the closed string
variables xj and F , including the energy-momentum ten-
sor, the Hamiltonian and the field equations. There are
only two differences. First, the closed string background
Gij , Fij = Bij +∂iAj −∂jAi and Φ = Φ0+aix

i is replaced
by the open string one:

Gij → G̃ij = Gij − 4FikPTkqFqj , Fij → F̃ij = 0,

Φ → Φ̃ = Φ0 + aiq
i. (7.1)

Second, instead of the closed string boundary conditions
γ

(0)
i

∣∣∣
∂Σ

= 0 and γ(0)
∣∣
∂Σ

= 0, we have the symmetries
under σ → σ + 2π and σ → −σ, for the open string
variables qi, f .

The relation between the closed and open string vari-
ables clarifies the origin of non-commutativity. The closed
string variables depend on the open string ones, but also
on the corresponding momenta. Hence, the Poisson brack-
ets between dynamical variables become non-trivial on the
world-sheet boundary.

Beside the well known coordinate non-commutativity,
we established the non-commutativity relation between
the Dp-brane coordinates and the conformal part of
the world-sheet metric. Both expressions for the non-
commutativity parameters, Θij and Θi, are proportional
to the Born–Infeld field strength Fij . In the linear dila-
ton background, we have aiΘ

ij = 0 and aiΘ
i = 0, which

makes the coordinate corresponding to the ai direction
commutative.

Let us compare the results of the present paper with
those of [7]. From the conformal invariance on the bound-
ary, (T+ + T−)|∂Σ = 0, these authors obtained an addi-
tional constraint on the background fields, aiFij = 0. In
our approach, the boundary condition (T+ + T−)|∂Σ = 0
is satisfied for arbitrary background fields. In fact, with
the help of (5.8), we have T± = T̃±, and the above equa-
tion takes the form T̃+ + T̃− = 0. As a consequence of the
second relation of (7.1), this condition is satisfied without
any restriction on the background fields.

The constraint aiFij = 0 of [7] is, in fact, a conse-
quence of the gauge fixing used. In the gauge F = 0,
the Poisson bracket {xi, F} vanishes, which, according to
(4.15), produces the above constraint.

In our treatment, the effective metric tensor G̃ij and
the non-commutativity parameters Θij and Θi explicitly
depend on the dilaton field. Therefore, we have a commu-
tative coordinate in an arbitrary background. In [7], the
existence of the commutative direction is a consequence
of the condition aiFij = 0. In particular, this condition
reduces our G̃ij and Θij to those of [7], while Θi van-
ishes. Thus, our results are more general, as they are valid
without the above restriction on the background fields.
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